Disruptive Technology for Measuring Nutrients and Nourishment

Buddy Ratner, <u>Jeanette Stein</u>, Edward Lo, Joelle Rolfs, Sam Herschbein, David Castner

University of Washington Department of Bioengineering Seattle Washington 98195

Food and Nutrition Bulletin, **29** (3): 195-202 (2008)

Developing a Tool to Detect Nutrient Deficiencies

Goals:

- Rapid
- Simultaneous
- Low Cost
- Durable
- Accurate

Can we develop one assay that can measure 5 micronutrients? YES!

Plasma Pencil Atmospheric Mass Spectrometry

Plasma Pencil Atmospheric Mass Spectrometry (PPAMS) System

Working towards an easily portable system

Bench-top MS

Portable MS

Data Analysis Workflow

BILL& MELINDA

GATES foundation

Graphical User Interface

Carrier ᅙ		10:06 AM		100% 📟
		Five for Health	n	0
		Sample Typ	e	
	0	Blood	Blood >	
		Saliva	Saliva >	
	-	Mucus	Mucus >	
		Skin	Skin >	
		Hair	Hair >	
	3	Urine	Urine >	
Reporting				
		Quick Overview	Quick Overview >	
		Reporting	Reporting >	
Advanced				
	A	Settings & Tools	Settings & Tools >	
		0		

Whole Blood

PPAMS was taken on raw nutrient powder and on dried blood samples

Adult human blood chosen as sample media to detect micronutrient levels

HBLC: High Blood Level Concentrations

For Each Nutrient Group:

- Iron: 2 ppm
- 20 ppm Zinc:
- Folic Acid: 50 ppb
- Retinol (Vitamin A): 625 ppb
- Thyroxine (lodine): 105 ppb

- Iron:
- Zinc:
- Folic Acid:
- Retinol (Vitamin A): 288 ppb •
- Thyroxine (lodine):
- 46 ppb

10 ppm

5 ppb

PPAMS on Examples on Patient Models with Single Nutrient Variations

"Relatively Healthy"

For Each Nutrient Group:

- 1 Nutrient at 1x LBLC
- 4 Nutrient at 1x HBLC

Control:

• All Nutrients at 1x LBLC

Media:

 10% Porcine Plasma in citrate Phosphate Buffered Saline

"Relatively Unhealthy"

For Each Nutrient Group:

- 1 Nutrient at 1x HBLC
- 4 Nutrient at 1x LBLC

Control:

• All Nutrients at 1x HBLC

Media:

 10% Porcine Plasma in citrate Phosphate Buffered Saline

"Relatively Healthy" sample groups separate nicely

"Relatively Unhealthy" sample groups separate reasonably well

If you utilize a more complex mathematical model...

... And utilize a large number of spectra as controls...

Mass/Charge

... then one can begin to move from the qualitative to the quantitative

Strategic Advantages

- PPAMS was rapid (~3-5 min), ~20 uL solution
- Physiological range of micronutrients in blood was within spectrometer detection range even in the presence of salt and proteins
- Multivariate PCA yielded simultaneous separation of the nutrients by type and quantity at both the lower ranges expected for a "malnourished" individual and at the higher ranges expected for a "well-nourished" individual.

Disruptive Technology for Measuring Nutrients and Nourishment

Venturing forth to measure new biological sample types

Physiology of Hair

PPAMS was taken on a fresh hair and cleaned hair samples

Several peaks were found to be present only in the sample of human hair

PPAMS was taken on a fresh fingernail clippings

Several peaks were found to be present only in the sample of human fingernails

PPAMS was taken on samples of raw, unpasteurized cow's milk with and without nutrient doping

PPAMS was able to distinguish changes in vitamin A and iron content in unpasteurized, raw cow's milk

Venturing forth to measure new biological sample types

What is the best measurement of nourishment in a population?

Acknowledgments

Project Advising:

- Buddy D. Ratner, PhD
- David G. Castner, PhD

Project Team:

- M. Jeanette Stein
- Edward Lo
- Joelle Roelfs
- Sam Herschbein
- Winston A. Ciridon
- Michael Volny, PhD
- Lurdes Inoue, PhD
- Laura Sangare, PhD
- Collin Waterton

Chemistry:

- Martin Sadilek, PhD (Mass Spec)
- James Bollinger (Mass Spec)
- William Beaty (Plasma Pencil Construction)

Additional:

- Jeffrey Morris, PhD
- Daniel J. Graham, PhD
- Bonnie Tyler, PhD
- Ratner lab
- Castner lab
- Chris Barnes, PhD (Project Alumni)
- Marvi A. Matos, PhD (Project Alumni)

Funding:

Biscuit Dough Composition Results

Water Safety: Lead, Copper & Zinc

Toy Safety: BPA and Lead in PVC

Plasma Pencil Atmospheric Mass Spec

Other options:

Analysis via hair, fingernails, skin, saliva, urine

Melanoma detection **Esophageal cancer analysis** Disease diagnosis based on breath analysis Food Analysis (spoilage, origin, authenticity) Wine analysis (grape? Quality? Adulteration?) **Perfume analysis** Counterfeit detection (drugs, consumer goods) Airport security, explosives detection Industry quality control Toys Water supplies and water safety Mineral identification

Positive ion PPAMS and PPAMS/MS spectra on a mixed HBLC nutrient sample in methanol MS/MS for Zn MS/MS for Fe

mz

m'z

Variation of normalized signal intensities for some ions observed for Sn(Oct)₂

BILL& MELINDA GATES foundation

Variation of normalized signal intensities for some ions observed for Sn(Oct)₂

BILL& MELINDA GATES foundation

END

Positive ion PPAMS and PPAMS/MS spectra on a mixed HBLC nutrient sample in methanol MS/MS for Zn MS/MS for Fe

mz

m'z

Fodine Deficiency

Moderate Deficiency

e Mild y Deficiency Ideal

At Risk (hyperthyroidism) Adverse

Health

Risks

Food and Nutrition Bulletin, 29 (3): 195-202 (2008)

Multivariate Data Analysis

Analytical and clinical chemistry generally focuses on one test to measure each analyte?

Can we measure many things simultaneously?

Micronutrient mass spectra successfully separated by PCA

PCA data for mixed samples with four nutrients at 1xHBLC and one nutrient at elevated 10x HBLC

You can't manage what you can't measure

George Soros

To measure is to know

Lord Kelvin

How such analysis is done now:

BILL& MELINDA GATES foundation

Powerful tools for data analysis...multivariate analysis

Why Use Multivariate Data Analysis?

- It is difficult to identify people based only on their heights, weights, eye color or hair color...
- ...however, given all this information, identification becomes easier

PCA - Principal Component Analysis

What are the important differences and key identifiers of different samples?

Separate the signal from the "dross"

PLS - Partial Least Squares

Develop a quantitative calibration model

Plasma Pencil Mass Spec

Chemometrics

Positive ion ESI-MS spectra separation includes many of the peaks present in raw powder spectra

GATES foundation

(multi-component mixtures consisting of one nutrient at a 10-fold concentration of its HBL concentration and the remaining four nutrients at a 1x HBL concentration)

- Each spectrum had signature peaks for the respective nutrient as confirmed by raw nutrient spectra (data not shown).
- The presence of the other nutrients did impact some key nutrient peaks
 - Ex. Peak at 777 for Thyroxine by itself disappears in mixed solutions.

BILL& MELINDA GATES foundation

Analytical Chemistry, Vol. 80, No. 23, December 1, 2008

3W, 2.5-5kV

Analytical Chemistry, Vol. 80, No. 23, December 1, 2008

Q1: Does electrode length affect fragmentation?

** Experiment Performed on Bruker

Principal Component #1 Scores: Vitamin A

Principal Component #1 scores indicate length of electrode does affect Vitamin A fragmentation

Loadings Comparison- positive

Q2: How *exactly* does electrode length affect fragmentation and is the effect universal?

** Experiment Performed on Advion

SS mesh coated with Sn(Oct)₂

(Stannous Octoate, Tin(II) 2-ethylhexanoate)

Future Work
Sputter degradation of Poly(ethylene teraphalate) polymers with static secondary ion mass spectrometry

ANALYTICAL CHEMISTRY, VOL. 63, NO. 6, MARCH 15, 1991

Key Issue: Instrument contamination

TI Normalized Hair Data

BILL& MELINDA GATES foundation

BILL& MELINDA GATES foundation

Hair : AgCl??

Disruptive Technology for Measuring Nutrients and Nourishment

Buddy Ratner, Jeanette Stein, Edward Lo, Sam Herschbein David Castner

> University of Washington Department of Bioengineering Seattle Washington 98195

PPAMS was able to distinguish changes in vitamin A and iron content in unpasteurized, raw cow's milk

Collabration with Dr. Castner's group on Polydiallyldimethylammonium chloride (PDDA) and PET polymer samples

What future applications can we utilize the PPAMS for?

(Funding would be nice too.)

New Directions

Moving towards studying the Nutrient Economy with the Ashoka Foundation

Healthy Environment

Nutrient Rich Farming

Full Nourishment Foods

Wellness and Vitality

- What are the markers for wellness? How many different markers can we identify and what affect do they have on our lives/economies?
- Are the nutrient programs that we have in place adequate to address issues?
- What is the bioavailability of the nutrients in our foods?
- What is the economic impact of these changes? In developed and underdeveloped nations?

Several peaks were found to be present only in the sample of human hair

Several peaks were found to be present only in the sample of human hair

Detection of Neglected Tropical Diseases

- For the elimination of <u>lymphatic filariasis</u> (LF, also known as elephantiasis) by 2020
- The control of:

Grand Challenges | EXPLORATIONS

- Onchocerciasis (river blindness),
- <u>Soil-transmitted helminthic (STH)</u> infections (ascariasis, trichuriasis, and hookworm disease)
- <u>Schistosomiasis</u>.

